Name Date	
-----------	--

Exponential Growth & Decay Notes

Exponential functions are functions that have a variable (x) in the exponent.

Standard form for exponential functions : $y = ab^x$

b= growth/decay factor ifb>1, growth If0<b<1, decay

Example 1... Without graphing, determine whether each function represents exponential growth or decay. Also determine the percent increase or decrease.

a. $y = 100(0.12)^x$

Decay

1-,12=.88

88% decrease

b. y = 0.2(1.74)x Growth 74 % increase

c. y = 16(3.4)x

3.4-1=2.4

240% increase

d. $f(x) = 32(\frac{14}{10})^x$ $\frac{14}{10} = 1.4 - 1 = .4$

Example 2... A new car that sells for \$18,000 depreciates 25% each year. Write a function that models the value of the car. Find the value of the car after 4 years.

a = 18000 b = 1 - .25 = .75 x = 4 y = ?

 $y = 18000(.75)^{x}$ $y = 18000(.75)^{4}$ y = 18000(.3164)y = \$5,695.31

Example 3... An abandoned house has a mouse population of 22. It is increasing at a rate of 5% per month. Write a function that models the population. Estimate when there will be 50 mice in the house.

 $\alpha = 22$ b = 1 + .05 = 1.05 x = ?y = 50 $y = 22(1.05)^{x}$ $50 = 22(1.05)^{x}$ $2.273 = 1.05^{x}$ x = 16 + 0.17

Between 16 + 17 worths

Example 5... For each annual rate of change, find the corresponding growth or decay factor.

a.
$$+35\%$$
 b. -47% b. -47% b = 1-. 47 = .53

Exponential functions are used to represent many different real-life situations. Here are a few:

The Richter Scale!

The energy released by an earthquake can be represented by the equation: $E\cdot 30^x$, where xis the magnitude of the earthquake on the Richter Scale. (E represents some amount of energy that was present in the earth "originally" – it's not important for this application.)

Example 1... In 1995, an earthquake in Mexico registered 8.0 on the Richter scale. In 2001, an earthquake of magnitude 6.8 shook Washington state. Compare the amounts of energy released in the two earthquakes.

$$\frac{4.30^8}{1.30^{6.8}} = \frac{30^8}{30^{6.8}} = \frac{30^{1.2}}{30^{6.8}} = \frac{59.23}{10^{6.8}}$$
The Mexico earthquake was 59.23 times stronger than Wash.

Half-life!

Half-life is a method of figuring out how old certain substances are. When we know how quickly a substance decays, we can use that information to find out how long it's been sitting $y=a(2)^{th}$ a=initial amount t=time k=half-lifearound.

Example 2...

a) Technetium-99m has a half-life of 6 hours. Find the amount of technetium-99m that remains from a 50-mg supply after 25 hours.

$$0.750$$
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.750
 0.75

b)	Arsenic-74 is used to locate brain tumors. It has a half-life of 17.5 days. Write an	
	exponential decay function for a 90-mg sample. Use the function to find the amount	ıt
	remaining after 6 days. $y = 90(\frac{1}{2})^{\frac{1}{17.5}}$	

$$0.000$$
 0.000

Compounded Interest!

How much money will you have in the account after 25 years?

$$0 = 100$$
 $1 = 100 (1 + \frac{.04}{41})^{4(25)}$
 $1 = .04$
 $1 = .04$
 $1 = .04$
 $1 = .00 (1.01)^{100}$
 $1 = .04$
 $1 = .00 (2.705) = 4.270.48$

Example 3...

A=Pere r=interest rate t= time

a) You invest \$1050 at an annual interest rate of 5.5% compounded continuously. How much money will you have in the account after ten years?

$$P=1050$$
 $A=1050e^{.055(10)}$
 $T=.055$ $A=1050e^{.55}$
 $E=10$ $A=1050(1.733)$
 $A=1050(1.733)$

b) A student wants to save \$8000 for college in five years. How much should be put into an account that earns 5.2% annual interest compounded continuously?

$$P = ?$$
 $T = .05Z$
 $E = .05Z$
 E