Polynomials & Linear Factors Notes

Finding the roots (or zeroes or solutions) of a polynomial means to figure out what values of x would give you y = 0.

If you remember from Chapter 5, one of the ways to solve an equation is by factoring. We use the term "multiplicity" when there is more than one of a particular factor.

Example 1... Find the zeroes of each function, and state their multiplicity.

a.
$$(x-3)^2(x-1)$$

 $(x-3)(x-3)(x-1)$
 $x=3,3,1$
 $x=3$ mult. 2

b.
$$(x+1)(x-2)(x-3)$$

 $x = -1, z, 3$

C.
$$(x-4)^5(x+2)^3$$

 $|x=4|$ mult. 5
 $|x=-2|$ mult. 3

Example 2... Write a polynomial function given the following zeroes.

a.
$$x = -2, 0, 1$$

 $(x+2)(x)(x-1)$
 $(x+2)(x+2)(x-1)$
 $(x+2)(x+2)(x-1)$
 $(x+2)(x+2)(x+2)$

b.
$$x = -5, -5, 1$$

 $(x+5)(x+5)(x-1)$
 $(x^2+10x+25)(x-1)$
 $(x^3-x^2+10x^2-10x+25x-25)$
 $(x^3+9x^2+16x-25)$

Example 3... Factor each polynomial completely (*hint: factor out GCF first!).

a.
$$9x^3 + 6x^2 - 3x$$

b.
$$x^3 + 8x^2 + 16x$$

 $(x^2 + 8x + 16)$

Now that we know how to find the zeroes of a polynomial function, we can combine that knowledge with the end behaviors we learned and use Bump, Wiggle, and Cross to help us sketch a more accurate graph of the polynomial.

For $(x-c)^n$	B, W, C	Example
If n is even	Bump	(x-2) ²
If n is odd	Wiggle	(x-2) ³
If $n=1$	Cross	(x-z)

Example 4... Find the zeroes of the function. Then sketch the graph of the function. a. $(x-3)(x+1)^2$ b. $(x+2)(x-1)^3(x+3)^4$

a.
$$(x-3)(x+1)^2$$

x = - 3 mult 4 bump

