NAME: \qquad Class: \qquad

Intro to Polynomials Test Review (*problems are NON_Calculator)

\#1-2. Classify each polynomial by degree and number of terms.

$$
\text { *1. }-3 x^{4}-2 x^{3} \quad \text { *2. } 7 x^{5}-9 x^{4}-6 x^{2}+8
$$

3. Write $-4 x^{2}\left(3 x^{2}+x^{3}\right)$ in standard form. Then classify it by degree and number of terms.
4. Zach is trying to build a box out of a rectangular piece of cardboard that measures 8 inches on one side and 12 inches.By cutting 4 squares from the corners of the rectangle, of length x, a box can be formed by folding the sides up.
The function $\boldsymbol{v}(\boldsymbol{x})=\mathbf{3} \boldsymbol{x}^{\mathbf{3}}-\mathbf{3 0} \boldsymbol{x}^{\mathbf{2}}+\mathbf{7 2 x}$ models the different volumes with respect to the different values of x. For the function $v(x)$, what are the x-intercepts?
5. Which of the following would represent a reasonable domain for the volume of the box as a function of height, x, as expressed by the function $v(x)$ shown in \#4? (Use interval notation)
6. The table shows the number of hybrid cottonwood trees planted in tree farms in Oregon since 1995. Find a cubic function to model the data and use it to estimate the number of cottonwoods planted in 2007.

Years since 1995	1	3	5	7	9
Trees planted (in thousands)	1.3	18.3	70.5	177.1	357.3

7. Find the zeroes of $f(x)=(x+2)^{4}(x-9)^{3}$ and state the multiplicity.
8. Write a polynomial function in standard form with zeros at $3,-5$, and -2 .
*9. Find the zeroes of $y=x(x+4)(x-3)$. Then sketch the graph of the equation.

\#10-11: Describe the end behavior of the functions. Sketch the graph.
*10. $f(x)=x^{5}-x^{3}+x-4$
*11. $h(x)=-x^{8}-3 x^{4}-9$

\#12-14: Write the expression as a polynomial in standard form.
9. $(2 x-1)(x+3)(-3 x)$
10. $(x+3)(x+2)(x-5)$
11. $(-2 x)(x+4)^{2}$
\#15-18: Factor the expression completely.
12. $2 x^{4}-12 x^{3}+16 x^{2}$
13. $2 x^{3}+x^{2}+6 x+3$
14. $x^{4}-40 x^{2}+144$
15. $8 x^{3}+216$
\#19-22: Factor the expression completely and solve.
16. $x^{3}-5 x^{2}-4 x+20=0$
17. $x^{3}+3 x^{2}-4 x=0$
18. $x^{3}-27=0$
19. $x^{4}-25 x^{2}+144=0$
\#23-24: Write the factor that corresponds to each zero.
20. $x=-\frac{3}{4}$
21. $x=-8$
\#25-26: Write the zero that corresponds to each factor.
22. $x-10$
23. $2 x-5$
\#27-28: Divide using long division. Determine whether the binomial is a factor of the polynomial.
24. $\left(x^{4}+20 x^{3}+74 x^{2}+31 x-36\right) \div(x+4)$
25. $\left(x^{3}+3 x^{2}-11 x+4\right) \div(x+6)$
\#29-30: Divide using synthetic division. Determine whether the binomial is a factor of the polynomial.
26. $x^{4}-2 x^{3}-x^{2}-4 x-6$ by $x+2 \quad$ 30. $x^{3}+x^{2}-16 x-16 \div x+2$
*\#31-32: Graph the following
A) Identify all zeroes using factoring and/or synthetic division
B) Identify end behavior and possible \# of turns
C) Sketch the graph to ensure your graph is a close replica of the real graph.

$$
\text { *31. } \mathrm{x}^{3}+\mathrm{x}^{2}-8 \mathrm{x}-12 \quad \text { * 32. } x^{4}-6 x^{3}-19 x^{2}+24 x
$$

33. Use synthetic division to find $P(3)$ for $P(x)=x^{4}-8 x^{3}-9 x^{2}+7 x-7$.
34. Given $p(x)=x^{4}-10 x^{3}+8 x^{2}+106 x-105$, use synthetic division to determine $p(-2)$.
35. The volume of Link's treasure chest in cubic feet can be expressed as the polynomial $2 x^{3}-19 x^{2}+54 x-45$. Each dimension of the box (length, width and height) can be expressed as a linear expression with integer coefficients. If $x-5$ is one of those dimensions, find the other two.
\#36-37: Determine if the following graph has an odd or even degree and a positive or negative leading coefficient.
*36.

38. "Key Attributes"

Let $g(x)=-x^{4}$.
a. What is the end behavior of $g(x)$?
b. What is the x-intercept of the graph of $y=g(x-3)$?
c. What is the y -intercept of $\mathrm{g}(\mathrm{x})$?
d. What is the domain of $g(x)$?
e. Is $\mathrm{g}(\mathrm{x})$ an odd or even degree?
39. Transformation Review

The cubic parent function, $f(x)=x^{3}$, is transformed to $h(x)=(3 x)^{3}+2$.
a. What is the end behavior of $\mathrm{h}(\mathrm{x})$?
b. How is $\mathrm{h}(\mathrm{x})$ being translated?
c. What is the y-intercept of $h(x)$?
d. What is the domain of $\mathrm{h}(\mathrm{x})$?
e. Is $\mathrm{h}(\mathrm{x})$ an odd or even degree?
f. How is $\mathrm{h}(\mathrm{x})$ being stretched or compressed?
40. Graph the following: $x^{3}+2 x^{2}+x+2$; find all the zeroes, identify end behavior and sketch an accurate replica of the graph. STATE ALL THE ZEROES (Real and imaginary)

